Search results for " 37E10"

showing 2 items of 2 documents

On James Hyde's example of non-orderable subgroup of $\mathrm{Homeo}(D,\partial D)$

2020

In [Ann. Math. 190 (2019), 657-661], James Hyde presented the first example of non-left-orderable, finitely generated subgroup of $\mathrm{Homeo}(D,\partial D)$, the group of homeomorphisms of the disk fixing the boundary. This implies that the group $\mathrm{Homeo}(D,\partial D)$ itself is not left-orderable. We revisit the construction, and present a slightly different proof of purely dynamical flavor, avoiding direct references to properties of left-orders. Our approach allows to solve the analogue problem for actions on the circle.

CombinatoricsGroup (mathematics)Primary 37C85. Secondary 37E05 37E10 37E20[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]FOS: MathematicsBoundary (topology)Finitely-generated abelian groupGroup Theory (math.GR)Dynamical Systems (math.DS)Mathematics - Dynamical SystemsMathematics - Group Theory[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]Mathematics
researchProduct

Ping-pong configurations and circular orders on free groups

2017

We discuss actions of free groups on the circle with "ping-pong" dynamics; these are dynamics determined by a finite amount of combinatorial data, analogous to Schottky domains or Markov partitions. Using this, we show that the free group $F_n$ admits an isolated circular order if and only if n is even, in stark contrast with the case for linear orders. This answers a question from (Mann, Rivas, 2016). Inspired by work of Alvarez, Barrientos, Filimonov, Kleptsyn, Malicet, Menino and Triestino, we also exhibit examples of "exotic" isolated points in the space of all circular orders on $F_2$. Analogous results are obtained for linear orders on the groups $F_n \times \mathbb{Z}$.

[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR][ MATH.MATH-DS ] Mathematics [math]/Dynamical Systems [math.DS][MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]MSC2010: Primary 20F60 57M60. Secondary 20E05 37C85 37E05 37E10 57M60.Extension (predicate logic)Group Theory (math.GR)Dynamical Systems (math.DS)Space (mathematics)20F60 57M60[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsFree groupsOne-dimensional dynamicsFree groupPing pongFOS: MathematicsDiscrete Mathematics and CombinatoricsOrder (group theory)Geometry and TopologyMathematics - Dynamical SystemsMathematics - Group TheoryMathematicsOrders on groups
researchProduct